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Abstract

Hardware-assisted virtualization is a key enabler of the mod-
ern cloud. It decouples virtual machine execution from the
hardware it runs on, allowing increased flexibility through
services such as dynamic hardware provisioning and live
migration. Underlying this flexibility is the security promise
that guest virtual machines are isolated from each other.
However, due to the level of sharing between VMs, hardware
vulnerabilities present a serious threat to this usage. One
such vulnerability is Rowhammer, which allows attackers to
modify the contents of memory to which they have no access.
While the attack has been known for over a decade, published
applications against such environments are limited, compro-
mising only co-resident VMs, but not the hypervisor. More-
over, due to security concerns, a key component enabling
their attack has been disabled. Hence, this attack is no longer
applicable in a contemporary virtualized environment.

In this paper, we examine how Rowhammer can affect vir-
tualized systems. We present HyperHammer, a Rowhammer
attack that breaks hypervisor-enforced memory isolation
and further compromises the hypervisor. Due to the highly
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specific system requirements for leveraging Rowhammer
bit flips, HyperHammer is demonstrated on a very partic-
ular system configuration. Therefore, as demonstrated, Hy-
perHammer is more a proof-of-concept than an immediate
threat to computer systems. Nonetheless, our work demon-
strates that hardware-assisted virtualization does not fully
protect the hypervisor, and that with sufficient engineering
a determined attacker might achieve complete hypervisor
compromise.
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1 Introduction

Hardware-assisted virtualization allows cloud providers
to efficiently share physical hardware among multiple users
while keeping their workloads isolated. In a typical installa-
tion, the resources of a host machine are shared among multi-
ple guest virtual machines (VMs) or hardware-assisted virtual
machines (HVMs), which are unaware they are not running
directly on physical hardware. A hypervisor software, run-
ning on the host, manages the guest VMs and provisions the
host’s resources among them. Thus, the hypervisor controls
the number of CPU cores that are allocated to each VM, the
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memory space it can access, and the hardware devices avail-
able to it. The operating system in the VM is oblivious to the
actual resources available on the machine it runs on. Instead,
it only manages the resources that the hypervisor supplies.

Implementations of hypervisors, such as KVM [32], Xen [6],
or Hyper-V [28] use hardware features such as VT-x and
VT-d [21] to provide efficient virtualization. These features
provide services such as nested page translations that allow
seamless isolation of the memory provided to guest VMs,
or device pass-through, which allows VMs direct access to
some of the host’s hardware devices.
Since all guest VMs share the host’s physical memory,

maintaining isolation between VM address spaces is a crit-
ical responsibility of the hypervisor.

Currently, modern computers primarily use Dynamic Ran-
dom-AccessMemory (DRAM) for theirmainmemory. DRAM,
however, is known to be vulnerable to read disturbance at-
tacks, such as Rowhammer [31] and Rowpress [37], where
reading memory at specific access patterns can cause bit flips
in memory locations that are not accessed at all. Rowham-
mer potentially affects all modern DRAM chips [11, 14, 18,
24, 29, 33].
The ability to modify memory contents without access-

ing them can have disastrous security implications. A large
number of attacks have been demonstrated compromising
system security [10, 13, 16, 17, 44, 46, 50, 54, 59, 61, 63]. All
of these attacks involve a crucial step, called memory mas-
saging, in which the attacker manipulates the system into
placing sensitive objects, such as page tables, in memory
locations that the attacker can manipulate via Rowhammer.
Until now, all existing memory massaging techniques rely
on memory management features, which are unavailable
for exploitation in contemporary virtualized environments.
To the best of our knowledge, only two attacks specifically
target virtualized environments. Xiao et al. [59] focus on
Xen paravirtualized environments, which are not commonly
used in contemporary cloud environments. Razavi et al. [44]
target hardware virtualized environments, but their work
relies on a memory deduplication feature that has been long
turned off in commodity hypervisors [54, 56]. Furthermore,
their work targets co-resident VMs, rather than compromis-
ing the hypervisor. Given the lack of evidence showing how
Rowhammer affects modern hypervisors, in this work we ask
the following question: Are modern virtualization platforms
vulnerable to Rowhammer attacks?

1.1 Our contribution

Our research demonstrates that modern virtualization plat-
forms are indeed vulnerable to Rowhammer attacks. We
present HyperHammer, an attack on a modern virtualized
environment that builds on Rowhammer together with a
combination of recent hardware-assisted virtualization fea-
tures. We show that HyperHammer can compromise the
isolation provided by KVM, a popular virtualization solution

that is part of the Linux kernel. HyperHammer allows a
malicious VM to escape KVM-enforced isolation and gain
arbitrary access to the host’s memory.
Our implementation of HyperHammer is tailored to a

specific system configuration, including the use of the KVM
hypervisor that supports transparent huge pages [12], im-
plements the software countermeasure to the iTLB Multihit
bug [19] and uses the virtio-mem driver. Moreover, the at-
tack is statistical in nature, with a success probability that
depends on the amount of host memory that is allocated
to the VM. Even when allowing the VM to use most of the
available memory, the expected runtime of HyperHammer
is measured in months. Consequently, we do not view Hy-
perHammer as an immediate threat to computer security.
Instead, we use it as a case study to assess the amount of
engineering required to achieve hypervisor compromise in
hardware-assisted virtualization and to demonstrate that
determined attackers can use Rowhammer to breach such
systems.
From the technical side, HyperHammer follows the gen-

eral structure of previous Rowhammer attacks, consisting
of three main steps: memory profiling, memory massaging,
and exploitation. However, in each of these steps, we need
to overcome the unique challenges that the virtualized en-
vironment introduces. We now overview these steps, the
challenges they introduce, and how we overcome them. Ad-
mittedly, while the challenges may be relevant in a wider
context, the way we address them is highly specialized to
the specific system configuration we use. Nonetheless, we
believe that insights from the technical details may carry
over to wider contexts.

Memory Profiling. The aim of memory profiling is to
identify vulnerable bits and the exact conditions (timing,
access patterns, andmemory layout) required to trigger them.
The main challenge here is that the attacker, which controls
a malicious VM, cannot recover the physical addresses of the
memory that the hypervisor allocates for it. Consequently,
the attacker cannot make use of known memory mappings
to construct efficient Rowhammer attacks [42, 57, 59]. We
overcome this challenge by relying on the default use of
transparent hugepages (THP) [12] in the hypervisor. With
THP, the attacker can recover the 21 least significant bits of
physical addresses, which are often sufficient for carrying
out the profiling.

Memory Massaging. The aim of memory massaging is to
place some sensitive data, in our case a page-table entry, in
memory locations containing bits vulnerable to Rowhammer,
allowing the attacker to change page mappings through bit
flips. We present Page Steering, an attack technique that
allows a VM to perform memory massaging.

The main challenge for Page Steering is that the hypervi-
sor pre-allocates the address space of the VM, including all
of its page tables, at VM creation time. To place a page-table
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entry on a vulnerable bit, we need a way of allocating new
page tables at runtime. Our solution is to exploit a counter-
measure for the iTLB Multihit bug [19], which affects many
Intel processors.1 When the countermeasure is triggered,
the hypervisor changes the memory mapping of the VM,
allocating a new page for the page table in the process.

Another challenge is that the memory address space of the
VM is largely static. However, the attacker needs a way of
releasing memory identified during profiling as vulnerable.
We observe that while virtio-mem enables the hypervisor
to set memory allocation targets, it does not enforce that
VMs adhere to these directives, allowing a VM to release
pages even when not requested by the hypervisor.
A third issue stems from the way that the kernel at the

host manages free memory. Due to the use of the virtio-
mem driver, the VM has to release at least 2MB of memory.
However, when allocating from the free list, the kernel at
the host tends to prefer using smaller blocks. Before we can
reuse the memory that the attacker releases, we need to get
rid of pages in these smaller free blocks. For that, we exploit
vIOMMU [4], an abstraction of the input/output memory
management unit (IOMMU). Specifically, we create a large
number of mappings from the IO virtual address space to
a single memory page in the VM. Each of these mappings
consumes an additional 4 KB page, allowing us to remove all
small blocks from the free list.
Exploitation. The main aim of the exploitation step of
HyperHammer is to change the page mappings so that the
address space of the VM contains a page-table page. We
achieve this by using Rowhammer to flip a bit in the page
table, which the memory massaging step has placed in a vul-
nerable location. This allows the VM to change the mapping
of its own address space to arbitrary physical memory pages,
which provides full access to the physical memory of the host.
The main challenge here is how to identify that the attack
succeeds, which we overcome by introducing techniques for
detecting page-table entries in the address space.
Summary of Contributions. In summary, in this paper,
we make the following contributions:
• We present HyperHammer, a modern Rowhammer at-
tack targeting virtualized environments (Section 4). We de-
scribe how to overcome the specific challenges that virtu-
alization presents to memory profiling (Section 4.1), mem-
ory massaging (Section 4.2), and Rowhammer exploitation
(Section 4.3).

• We implement HyperHammer on two machines, featur-
ing consumer- and server-class processors with current
versions of KVM and OpenStack. To the best of our knowl-
edge, HyperHammer is the first Rowhammer attack ef-
fective in modern hypervisors, and the first to attack the
hypervisor and not only co-resident VMs (Section 5).

1The latest microarchitecture with this bug is Comet Lake, launched in 2020
and still supported [19].

• We perform extensive experiments, evaluating success
rates and time requirements for the attack. We will make
the source code of the attack available to the public.

1.2 Responsible Disclosure

We reported our findings to the Linux Kernel, AWS, Google
Cloud, and OpenStack on June 22, 2024. The Linux Kernel
team confirmed that they would review kernel changes for
HyperHammer on June 25, 2024. AWS confirmed that they
had informed the relevant team for investigation on July 29,
2024. We developed a QEMU patch to mitigate HyperHam-
mer and submitted it on November 26, 2024. Following a
detailed discussionwith the QEMUmaintainer, we concluded
that the proposed patch would impact the functionality of
virtio-mem on November 30, 2024 [9].

2 Background and Related Work

In this section, we first briefly describe the Rowhammer
attack. We then introduce preliminaries for Page Steering.

2.1 Rowhammer Attack

Dynamic random-access memory (DRAM) is the standard
technology used for main memory in modern computers.
When a DRAM row’s cells are activated within the refresh
period, it affects the amount of charge in their adjacent rows’
cells, producing a circuit-level interference. While each in-
dividual charge disturbance is small, repeated disturbances
can accumulate over time, eventually causing bits to flip in
adjacent memory cells, changing their stored values from 0
to 1 or vice versa.

Rowhammer is such a circuit interference that causes bit
flips in DRAM cells. It was first published in 2014 [31], with
the key observation that activating rows can cause charge
leaks to their adjacent rows. When a row is activated fre-
quently, it can cause bit flips in adjacent rows. However, not
all DRAM rows are prone to Rowhammer. We refer to the
rows that can experience bit flips as victim rows, and those
that are activated to trigger bit flips as aggressor rows. Physi-
cal pages on victim rows or aggressor rows are called victim
pages or aggressor pages, respectively.
Prior to our work, the most relevant attack that exploits

Rowhammer against hardware-assisted virtualization was
demonstrated by Razavi et al. [43] They abuse the page dedu-
plication feature to corrupt targeted files (e.g., OpenSSH pub-
lic keys) residing in the page cache of a victim VM, breaking
inter-VM isolation, and compromising the victim VM. To
prevent this attack, page deduplication has therefore been
disabled [54, 56].
In a broader context, Xiao et al. [59] used Rowhammer

to compromise the Xen hypervisor from a paravirtualized
VM (PVM). In Xen’s paravirtualization, a PVM is modified
to be aware of its execution in a virtualized environment.
In particular, to manage the PVM’s address translation, Xen
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uses a single level of page table hierarchy. In this approach,
known as direct paging, the PVM is aware of the location
of the page tables in memory. As a result, the attack deter-
ministically flips a Page Middle Directory entry to point to a
forged page table. This attack is clearly not applicable in the
hardware-assisted virtualization scenario, which employs
two levels of page table hierarchy, as discussed below.

2.2 Hardware-assisted Virtualization Paging

In a native environment, the CPU uses page tables to trans-
late virtual addresses (VAs) to physical addresses (PAs).Within
a VM, the guest manages mappings from guest virtual ad-
dresses (GVAs) to guest physical addresses (GPAs) in guest
page tables (gPTs), while the hypervisor maintains an addi-
tional level of page tables called extended page tables (EPTs)
that store mappings between GPAs to host physical addresses
(HPAs). When the CPU accesses a GPA that has not been
mapped before, a page fault occurs. In response, the hypervi-
sor uses multi-level EPTs to establish the required memory
mapping. There are two modes for multi-level EPTs, i.e.,
4-level and 5-level EPTs. When a GPA does not have a valid
mapping, EPT entries (EPTEs) are created across the levels of
the EPTs. An EPTE is 64 bits in size and therefore each table
contains 512 entries. In this paper, we focus on the leaf EPT
pages under the mode of 4-level EPTs.

2.3 Linux Page Allocator

One of the major components of the Linux memory man-
agement subsystem is the buddy system, where pages are
organized as page blocks. A page block contains 2𝑛 consec-
utive pages where the block order 𝑛 is a number between
zero and an architecturally-specific maximum MAX_ORDER.
On x86_64, MAX_ORDER is 11, so the largest page block on
x86_64 contains 210 pages. The kernel uses a data structure
called page list to keep track of page blocks of the same order.

2.4 Page Migration Types

Page migration is a Linux feature that moves a page to an-
other physical location while retaining its mapped virtual
address. It is typically used to move pages to a NUMA node
closer to the current process, thus reducing memory access
latency. Not all pages in Linux can be migrated. Linux assigns
each page a migration type that determines whether and how
it can be moved in physical memory. In this paper, we focus
on two types: MIGRATE_MOVABLE and MIGRATE_UNMOVABLE.

In the Linux buddy system, there are MAX_ORDER free lists
for each migration type, with each list corresponding to a
unique order. When pages in a free list are exhausted, Linux
attempts to split page blocks of higher orders. If all pages of
the desired migration type are exhausted, the system falls
back to stealing pages of other migration types.

2.5 DMA and IOMMU

Direct memory access (DMA) allows peripheral devices to
access memory without involving the CPU. This is useful
for I/O-intensive devices, such as network interface cards
(NICs) and GPUs. If a device is compromised or its driver
is vulnerable, an attacker can exploit its DMA capability to
access unauthorized system memory via physical addresses
(PAs) directly, so-called malicious DMA access. To mitigate
such attacks, the OS uses the I/O memory management unit
(IOMMU), which works analogously to that of the memory
management unit (MMU). That is, the OS maintains IOMMU
page tables (IOPTs) that store mappings from I/O virtual
addresses (IOVAs) to PAs. Devices can perform DMA only
via IOVAs, which the IOMMU then translates to PAs.

2.6 PCI Device Assignment and VFIO

Hypervisors often emulate devices for the guest VMs. How-
ever, for better performance, the hypervisor can use PCI
device assignment (a.k.a. PCI passthrough) to allow the VM
to bypass the hypervisor and access the device directly. Be-
cause of the performance benefits, PCI device assignment
is widely supported by modern cloud providers [3, 15]. To
ensure logical isolation between the hypervisor and the VM,
PCI device assignment relies on the IOMMU.

One of the consequences of PCI device assignment is that
the hypervisor is not part of the communication between the
VM and the device and is therefore not aware of outstanding
DMA requests. To ensure the correctness of DMA requests,
the hypervisor pins the pages of the VM and marks them as
MIGRATE_UNMOVABLE, preventing them from being moved or
swapped out.
IOMMU implementations can differ significantly across

different architectures. As such, Linux introduces Virtual
Function I/O (VFIO), which is an IOMMU/device-agnostic
framework that abstracts away the differences. Since it ex-
poses direct device access to user applications, it benefits
both high-performance computing applications and VMs.
For example, Data Plane Development Kit (DPDK) is a set of
libraries and drivers designed to optimize packet processing
on high-speed network interfaces.

3 Threat Model and Assumptions

Aligned with Flip Feng Shui [44], we assume that the attacker
is a regular tenant of a public cloud and controls one VM.
The attacker aims to flip exploitable bits in sensitive data
structures, such as leaf EPTs. We further assume that the
attacker does not have access to these sensitive data struc-
tures and that, due to the hidden mapping from guest to
host addresses, the attacker is not even aware of the physical
address in which these structures are stored. Finally, like all
existing Rowhammer attacks, we assume that the physical
memory is vulnerable to Rowhammer and that the software,
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including the OS and hypervisor, works correctly without
any vulnerabilities.
In addition, we assume the attacker has been assigned

at least one PCI device, e.g., a NIC, with vIOMMU enabled.
We note that this is often supported in public cloud set-
tings, such as OpenStack [40]. We also assume that the cloud
enables memory overcommit to support on-demand mem-
ory allocation for VMs at runtime. The KVM hypervisor
supports two overcommitment techniques: virtio-mem and
virtio-balloon. In this work we mainly focus on virtio-
mem, which is compatible with PCI device assignment to guest
VMs, and assume that the hypervisor utilizes it. For com-
pleteness, we also discuss virtio-balloon in Section 6. Our
attacker aims to compromise the hypervisors. Consequently,
unlike Flip Feng Shui, we do not assume the existence of a
co-resident victim VM.
Our proof-of-concept attack further relies on multiple

features of the underlying hypervisor, including the use of
transparent huge pages and the deployment of software coun-
termeasures for the iTLB Multihit bug. While these features
are fairly common, the overall combination of such features
may not be very common. Thus, the threat of HyperHammer
is mainly theoretical. The attack demonstrates that systems
can be compromised, but is less likely to pose an immediate
threat to real-world systems.

4 HyperHammer

We now describe HyperHammer, a proof-of-concept attack
that shows how to use Rowhammer to achieve hypervisor
compromise from an HVM. At a high level, HyperHammer
consists of three main steps, similar to past works. First, the
attacker profiles the memory to identify vulnerable bits, i.e.,
bits that can be flipped with Rowhammer. Then, the attacker
manipulates the memory layout of the system to bring a
sensitive page to the vulnerable location. Finally, the attacker
uses Rowhammer to flip the bits and compromise the system.
While these steps are common to most Rowhammer at-

tacks, their implementations differ. In HyperHammer the
aim of the attack is to use Rowhammer to flip a bit in an
EPTE, altering the mapping of a page in the attacker’s VM
to point to another EPT page. When achieved, this allows
full access to the physical memory of the host system. To ac-
complish this, the attacker must navigate several challenges
unique to the virtualization setting. Unlike processes in bare-
metal operating systems, which can dynamically allocate
and release memory within their virtual address space at
runtime, the address space of VMs is typically pre-allocated
at VM creation and can only change under extreme condi-
tions. Consequently, VMs tend to have more limited control
over their own memory allocation than is typically available
to OS processes.

Additionally, memory management in hypervisors is more
constrained, with allocations often occurring in larger chunks.

For example, the virtio-mem driver, which we use, manages
memory in chunks of 2MB, whereas the mmap interface in
operating systems has a granularity of 4 KB. The reduced
granularity provides much lower flexibility to the attacker
and complicates memory manipulation.

In the rest of this section, we describe how HyperHammer
implements these steps and overcomes the challenges.

4.1 Memory Profiling

The first step of the HyperHammer attack is to profile the
memory. Unlike prior works that just search for pages with
vulnerable bits [44, 46, 52], HyperHammer has strict re-
quirements on the bits that it aims to flip, mainly due to
the use of the virtio-mem memory driver. When using
virtio-mem, the hypervisor allocates and releases guest
memory in chunks of 2MB (termed sub-blocks in the virtio-
mem nomenclature), which align with both the CPU’s 2MB
hugepages and with order-9 page blocks in the buddy system
of the hypervisor’s Linux kernel.

To exploit a vulnerable bit, the attacker releases the page
containing the bit to the hypervisor, while keeping the pages
that contain the aggressor rows in its address space. How-
ever, the 2MB chunks that virtio-mem manages typically
contain multiple consecutive DRAM rows. Consequently,
when releasing a 2MB chunk that contains a vulnerable bit,
the attacker relinquishes access to at least one of the ad-
jacent memory rows, precluding the use of a double-sided
Rowhammer attack [46]. Instead, we resort to using single-
sided Rowhammer, where the attacker uses the two rows
above or below the victim row.
A second challenge for profiling is that the hypervisor

hides physical addresses from the attacker. To perform the
attack, the attacker needs to access two adjacent aggressor
rows within the same DRAM bank. Physical address bits
determine the DRAM bank and row. Without the knowledge
of physical addresses, the attacker needs amethod for finding
suitable aggressor rows. A naive solution for this issue is
to brute force all possible rows. However, this can take a
long time. To speed up this process, we rely on transparent
hugepages (THP), a feature of the memory subsystem of
Linux. Since THP can improve performance, particularly for
memory-intensive programs, the KVM hypervisor enables
it by default [12]. With THP enabled, the memory that the
hypervisor allocates to the VM is likely to be backed by 2MB
hugepages. If the attacker configures the VM to use THP,
there is a high likelihood that 2MB hugepages in the VM are
backed by 2MB physical pages, which implies that the 21
least significant bits of a virtual address are preserved when
converted to a physical address.
Prior works [39, 42, 57, 59] reveal that many x86 proces-

sors use the least significant 21 bits of the physical address
to determine the corresponding DRAM bank. With THP, ad-
dress translation preserves these bits, allowing the attacker
to determine the DRAM bank that stores the contents of a
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memory address. We observed this property in both Intel
processors we used in our experiments. (See Section 5.1.)

Knowing the DRAM bank mapping function, the attacker
can pick two addresses that map to the same bank in two
consecutive rows at the start or the end of a 2MB hugepage
as aggressor rows. The attacker then scans the memory to
determine whether the attempt is successful, i.e., if a bit in a
different 2MB hugepage has flipped.

Even when the DRAM bank mapping function cannot be
determined [42], the attacker can still gain some benefits
from using THP. In such cases, the attacker can brute force
all pages at the border of a 2MB hugepage, without having
to consider all rows. This will be relatively slower than the
previous scenario by a factor that depends on the row size,
but is still viable within a reasonable amount of time.

The final step in profiling is to filter exploitable bits. Recall
that the attacker attempts to change the mapping of one of
the VM’s pages to point to an EPT page, which would allow
the attacker full access to the physical memory of the host.
For that, the attacker aims to change one of the PFN bits in
an EPTE, i.e., bits 12–47 within a 64-bit entry in the page [22].
However, we note that flipping any of bits 12–20 still points
to the same 2MB hugepage, which is unlikely to contain an
EPT. Moreover, flipping the high bits of the PFN will cause
it to point outside the physical memory. Thus, the attacker
needs only to focus on vulnerable bits that fall within the
range 21–⌈log2 (mem_size)⌉.

4.2 Page Steering

The attacker now needs to release the vulnerable pages back
to the hypervisor and coerce the hypervisor into reusing
these pages to host EPTEs. To achieve this, we propose Page
Steering, a novel method that takes advantage of memory
reuse mechanisms in hypervisors. Since we target KVM, we
exploit unique features of KVM to trigger page reuses within
the VM. The process, as depicted in Figure 1, consists of three
main steps.

First, the attacker needs to set up the system so an alloca-
tion of an EPT page uses the page the attacker relinquishes.
One of the challenges for achieving this is that virtio-mem,
which we use, manages memory in chunks of 2MB, or order-
9 blocks. Because the page allocation algorithm favors allo-
cating smaller blocks, the attacker needs to first exhaust these
blocks. To achieve this, the attacker exploits vIOMMU [4], a
KVM feature that allows assigning devices to VMs.
Secondly, the attacker needs to relinquish memory pages

containing vulnerable bits. The main challenge is that un-
like processes, which can allocate and release memory at
will, VMs have much less control of their address space. To
allow the VM to release pages, we abuse the Virtio [53] in-
terface that allows KVM hypervisors and VMs to negotiate
the amount of memory allocated to the VM.
Last, the attacker needs to cause the hypervisor to place

an EPT page on the vulnerable location. However, because

STEP 1
Exhaust Noise Pages

STEP 2
Release Vulnerable Pages

STEP 3
Create EPTEs

Before VM Boots Up After VM Boots Up

noise pages
allocated to the VM
used by EPT
used by IOPT

Figure 1. The process of Page Steering. Each block repre-
sents a page in the physical memory. After the VM boots up,
a number of pages are allocated to the VM ( ), and a few
more are used in the EPT ( ). We exploit the IOPT ( ) to
exhaust noise pages ( ; Section 4.2.1) that negatively impact
the attacker’s chance of success in STEP 1, and release vul-
nerable pages from the VM in STEP 2. Finally, in STEP 3, we
trigger page reuses by creating many EPTEs.

the hypervisor allocates the page tables for the VMwhen the
VM is initialized, there appears no need to create a new EPT
page. We overcome this challenge by exploiting the coun-
termeasure to the iTLB Multihit bug [19], which demotes
2MB hugepages into 4 KB pages, creating EPT pages in the
process.

4.2.1 Exhausting Free Lists. In virtio-mem, memory is
managed in units of sub-blocks, which are 2MB chunks
of memory. These typically consist of consecutive physical
memory that is stored as order-9 blocks in the MM free list
when released. EPT pages are of size 4 KB. Hence, when
allocating them, the kernel prioritizes using small blocks
from the free list. To increase the likelihood that EPT page
allocations use the pages released by the VM, the attacker
needs to first exhaust such pages. We refer to such pages as
noise pages henceforth. An important observation that we
make is the EPT pages are allocated as MIGRATE_UNMOVABLE.
Recall that the kernel maintains a separate free list for each
migration type, and allocates pages from the matching free
list before changing the migration types of pages. Thus, we
aim to exhaust small-order blocks in the free list of MIGRATE_
UNMOVABLE pages. To achieve that, we exploit properties
of vIOMMU [4], a hypervisor feature that virtualizes the
IOMMU of the processor. This feature is primarily used for
nested virtualization [4, 43] (VMs that provide virtualization
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Figure 2. Using I/O virtual addresses ( ) to exhaust small
blocks from the MIGRATE_UNMOVABLE free list. The attacker
allocates a single page ( ) in its own virtual address space
and creates multiple I/O mappings ( ) to the page, forcing
each of the mappings to consume an MIGRATE_UNMOVABLE
page (red boxes). Each of these pages covers a 2MB chunk
(between two red dotted lines) in the IOVA space.

services) and DPDK [20] (applications that access devices
directly for high-performance).
Exploiting the vIOMMU. To exhaust the free list of
MIGRATE_UNMOVABLE pages, the attacker exploits the behav-
ior of the vIOMMU, which manages IOMMU mappings on
behalf of the VM when the VM requests memory mappings.
These mappings are stored in order-0 MIGRATE_UNMOVABLE
pages. Specifically, the attacker manipulates vIOMMU to
populate its I/O address space. The approach is depicted in
Figure 2.
The attacker allocates a single page in its own address

space. It then uses vIOMMU to create multiple mappings
from the I/O virtual address space to the allocated page. The
attacker aims to force vIOMMU to allocate an IOPT page for
each of these mappings. Similar to CPU page tables, each
entry in IOPT translates the address of a 4 KB page. With 512
entries in an IOPT page, using virtual addresses that are 2MB
(512 · 4 KB) apart ensures that each mapping uses a different
IOPT page. Thus, by creating enough mappings, the attacker
consumes all of the small-order MIGRATE_UNMOVABLE free
blocks.

Two limitations of this approach are that a large I/O virtual
address space is required for consuming a large number of
MIGRATE_UNMOVABLE pages, and that, by default, vIOMMU
only allows 65,535 mappings per IOMMU group. We note,
however, that MIGRATE_UNMOVABLE pages are mostly used
for data buffers, which are not too common. In our experi-
ments, we find that under normal operations the number of
MIGRATE_UNMOVABLE pages rarely exceeds 50,000. Moreover,
we note that under some settings, the hypervisor assigns
more than one device in different IOMMU groups to the VM
(e.g., one GPU and several NICs, presumably provisioned

through SR-IOV, While this is unlikely to occur in most
real-world systems, it allows the attacker to consume more
MIGRATE_UNMOVABLE pages under these settings.
When to stop consuming MIGRATE_UNMOVABLEpages. Our
approach for exhausting the small-order free blocks does not
provide the attacker with feedback on the status of the free
list. Consequently, the attacker has no indication when all
small-order blocks are consumed. If the attacker continues
allocating IOPT after all small blocks are consumed, the
host kernel splits larger, order-9 or order-10, blocks. This
again adds 512 or 1,024 pages to the small-order lists. In
Section 4.2.3 we describe how we handle these remaining
small-order MIGRATE_UNMOVABLE pages.

4.2.2 Releasing Vulnerable Pages. Because VMs often
do not use all of the allocated memory space, cloud providers
tend to over-commit memory, and dynamically adjust the
amount of physical memory allocated to the VMs. While the
hypervisor can unilaterally use swap space to reduce the
amount of memory allocated to a VM, coordinating memory
availability between the VM and the hypervisor yields bet-
ter performance. This coordination is usually implemented
through paravirtualized devices called guest memory devices
(gMD), which facilitate memory negotiation between the
host and the VMs. On QEMU/KVM, gMDs follow the Virtio
specification [53]. For each VM, the hypervisor maintains
configuration information that specifies the currently allo-
cated memory size, targeted memory size, and maximum
memory size allowed for allocation. When the hypervisor
changes a configuration, the VM is notified and updates its
memory settings accordingly. For example, to decrease the
memory allocated for a VM, the hypervisor decreases the
target memory size and notifies the VM. The VM then typi-
cally chooses a set of pages that it can relinquish and passes
references of these pages to the hypervisor via the gMD.
Upon receiving this list, the hypervisor looks up the physical
pages and releases them back to the host. As mentioned in
Section 3, the KVM hypervisor supports two implementa-
tions of gMD devices, virtio-mem and virtio-balloon. In
this work, we exploit the virtio-mem implementation.
Voluntary PageReleases. In normal operation, when using
a Virtio device, the hypervisor initiates changes in memory
allocation. However, we observe that while the hypervisor
can use virtio-mem to request memory changes, it does not
enforce that the VM adheres to these requests. This means
a VM can release memory pages even when not requested
by the hypervisor or ignore hypervisor requests to release
memory.

Page Steering, exploits this lack of enforcement to release
pages that contain vulnerable bits. We make two modifica-
tions to the virtio-mem driver in the VM. First, we add the
functionality of releasing desired pages to the host. Specifi-
cally, having identified a vulnerable page, the attacker con-
verts its virtual address to a guest physical address. It then
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finds the virtio-mem’s identity of the page as block and
sub-block numbers and uses the function virtio_mem_sbm_
unplug_sb_online of the driver to relinquish the page. The
driver at the VM communicates with the hypervisor, which
identifies the physical address matching the sub-block, and
uses the madvise system call to release the page to the ker-
nel’s free list. Due to the use of THP, the typical end result
of this process is that the released memory is added to the
KVM/Linux buddy system as an order-9 block of free mem-
ory, which is available for future allocation.

The second change we make in the virtio-mem driver is
to avoid automatic memory allocations at the VM. Virtio is a
collaborative protocol. The hypervisor sets the desired target
allocation, and the VM issues memory requests to reach
the target allocation. When the VM voluntarily relinquishes
memory, it creates a discrepancy between the actual memory
allocation and the target allocation. Under normal driver
operation, the driver then notices that the current allocation
falls short of the target, and immediately issues a request to
allocate memory. As this request is served from the free list,
executing it will return the recently freed sub-block to the
VM. Our change prevents this undesired behavior.

4.2.3 Creating EPTEs. So far, the attacker reduced the
number of small-order MIGRATE_UNMOVABLE free blocks to
below 1,024, and released a virtio-mem sub-block as an
order-9 MIGRATE_UNMOVABLE free block. The remaining step
is to allocate an EPTE on a vulnerable bit. The challenge is
twofold. First, when using VFIO to assign a PCIe device to
the VM, the hypervisor pre-allocates all of the address space
of the VM. Thus, it is not clear how to create new EPT pages
for the VM. Secondly, the new EPT page should be created
on the page that contains a vulnerable bit. However, without
knowing how many small-order blocks are in the free list,
it is not clear how the attacker can manipulate the free list
to achieve this. To overcome this challenge, we exploit the
mitigation for the iTLB Multihit bug [19]. We first describe
the iTLB Multihit bug. We then follow with a description
of the countermeasure as implemented in KVM. Finally, we
describe how Page Steering exploits the countermeasure.
iTLB Multihit Bug. To speed up address translation,
the CPU caches recent translation results in the translation
lookaside buffer (TLB). On recent Intel Core and Xeon pro-
cessors, each of these TLBs is further divided based on the
page size it translates. In particular, the processor supports
separate instruction TLBs (iTLB) for regular pages of size
4 KB and for hugepages of size 2MB. The processor queries
both iTLBs concurrently during translation.

When the hypervisor or the OS needs to change amapping
and the size of a hugepage, they first change the page-table
entries and then invalidate the TLB entry. On some Intel
processors, a machine check error can occur when code
requires address translation of the affected page while its
stale iTLB entry hasn’t been validated. This error typically

results in system hangs or shutdowns. This opens up the
possibility of a malicious VM launching a denial-of-service
attack against the hypervisor.

Countermeasure. As a fix, KVM marks all mappings to
hugepages that back VM addresses as non-executable (NX)
by clearing bit 2 in the EPTE. Consequently, code in such
pages cannot execute, and therefore the processor never
creates an iTLB entry for the mapping. Because hugepages
are marked as non-executable, attempting to execute code
in a hugepage results in a page fault, which the hypervisor
intercepts and then splits the hugepage into 512 4 KB pages,
marks them as executable by setting bit 2 in their EPTEs,
and resumes code execution. When execution proceeds from
these 4 KB pages, the address translation results are stored
in the 4 KB iTLB, which is not vulnerable to the Multihit bug.
Despite the potential performance impact, KVM enables this
countermeasure by default [51].

Exploit. In Page Steering, we exploit the observation that
when splitting a hugepage into 4 KB pages, the hypervisor
uses a new EPT page to store the mappings of the 4KB
pages. Thus, for the attack, we force code execution on a
hugepage. This triggers the countermeasure for the Multihit
bug, which allocates an EPT page when splitting a hugepage.
Before allocating pages from the buddy system for EPT page
creation, one source of noise pages is free page caches, such
as the header page cache and the per-CPU pageset (PCP),
which are prioritized when allocating pages. After that, the
other source is the imprecision of our method for consuming
small-order blocks (Section 4.2.1), which can leave up to 1,024
pages in the small-order lists. Finally, the attacker releases
vulnerable hugepages of size 2MB. These contain 512 4 KB
pages, only one of which is vulnerable. Thus, even if we could
precisely exhaust the small-order blocks, the likelihood that
we would get the vulnerable location on the allocation of an
EPT is very small.

To ensure that an EPTE is placed in a vulnerable location,
we use a limited spraying approach. Specifically, instead of
allocating a single EPT page, we allocate several hundred.
That is, if we release 𝑁 hugepages, we allocate at least 512 ·
(𝑁 + 2) EPT pages. These first consume pages in the header
page cache and the PCP, then pages from the remaining
small-order free blocks in the buddy system, and finally all
of the pages of the 𝑁 hugepages we released. Thus, with a
high likelihood, the vulnerable bits in the released hugepages
will be allocated for EPTEs.

In practice, to allocate such a number of EPT pages, we
allocate a large memory buffer. Due to the use of THP, the
buffer is likely to be backed by 2MBhugepages. Alternatively,
because we control the VM, we can set up a large number
of hugepages and use mmap to use them. In this buffer, we
write the machine code of the function in Listing 1 before
executing the code. The function basically does nothing. As
splitting a hugepage creates one EPT page, to create 512 EPT
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pages we need 512 hugepages, or 1GB of memory. Hence,
to place EPTEs on vulnerable locations in 𝑁 hugepages, the
size of the allocated buffer needs to be 𝑁 + 1GB.

1 push %rbp
2 mov %rsp,%rbp
3 nop
4 ... ; a number of `nop`s
5 nop
6 pop %rbp
7 ret

Listing 1. An Idling Function

4.3 Exploitation

After performing Page Steering, the system is in a state where
some leaf EPTEs are placed in memory locations that con-
tain bits vulnerable to Rowhammer. Our aim in this third
and final step of HyperHammer is to exploit these vulner-
able EPTEs for privilege escalation. For that, the attacker
uses Rowhammer to flip the vulnerable bits and changes the
physical page that a leaf EPTE points to. Privilege escalation
is achieved when the changed mapping points to another
leaf EPT page, allowing the attacker to modify it and access
arbitrary physical memory locations.
Performing the Rowhammer attack is straightforward.

The aggressor rows have not been released and are still
within the address space of the VM. Thus, the attacker can
repeat the patterns used during profiling to cause bit flips. For
a successful attack, the attacker needs to achieve two aims.
First, they should identify that the mapping has changed.
Then, if the mapping changes, the attacker should identify
whether the new mapping gives access to an EPT page.
Identifying Mapping Change. To identify that the EPT
has changed, the attacker first marks memory pages with a
magic value. By checking the magic value, the attacker can
validate the mapping of the page address. If the Rowhammer
attack is successful, the page that the new mapping points
to no longer contains the correct magic value.
Identifying EPT Pages. With a mapping change, the at-
tacker needs to check whether the new target of the modified
mapping is an EPT page. The attacker first performs a sanity
test, checking whether the contents of the page look like an
EPT page. For this, the attacker scans every group of 8 bytes
(matching an EPTE) on the page. The format matches if all
of the bits in the eight bytes are zero or if the 8 bytes contain
a large value, where at least one of the least significant 12
bits is not zero. If the format matches for all 512 groups of
8 bytes, the attacker proceeds to validate that the page is
indeed an EPT page.
To validate that the page is an EPT page, the attacker

modifies the EPTE entries one by one. After modifying each
entry, the attacker again scans the address space checking for
the presence of the magic values in pages. If after the change

new mapping changes are detected, the attacker knows that
the page is an EPT page. By changing the EPTE entries on
the page, the attacker can now escape the VM and access
arbitrary locations in the physical host memory.

Improving Success Rates. The HyperHammer attack
can fail for several reasons. First, due to system noise, Page
Steering may fail to place an EPT page on a vulnerable bit.

Second, even when an EPT page is placed on a vulnerable
bit, it is not clear that the bit will actually flip. This can
happen both because Rowhammer can sometimes be non-
deterministic, but also because Rowhammer flips tend to
be unidirectional, i.e., some bits flip from 0 to 1, whereas
others from 1 to 0. So, depending on the EPTE contents, the
vulnerable bit may or may not flip.

Third, even if the flip is successful, there is only a small
probability that the physical page the entry points to after
the flip is an EPT page. Each EPT page describes 512 memory
addresses. In a hypervisor setting, the attacker cannot create
multiple EPT mappings to the same physical page. Hence, in
a typical system, there will be at least 512 pages for each EPT
page. (At least because not all physical memory pages have
EPTEs pointing to them.) Assuming that bit flips change the
mapping to a random page, the probability of getting an EPT
page is therefore less than 1/512.

Finally, for a simple VM escape, the attacker requires that
the EPT page it accesses describes the address space of its
own VM. Otherwise, the attacker can change other VMs, but
not access the modified mappings.

Due to the probabilistic nature of the attack, increasing the
number of vulnerable bits that the attacker targets increases
the likelihood of success. However, there is a limit to the
number of vulnerable bits that the attacker can exploit. Recall
that for each hugepage containing a vulnerable bit that the
attacker releases to the hypervisor, the attacker needs to
create 512 EPT pages. With each EPT page consuming 2MB
of address space, the attacker needs 1GB of guest physical
memory for each vulnerable bit released. Thus the maximum
number of vulnerable bits the attacker can exploit is limited
by the size of the guest physical memory.

A consequence of the limitation and the low success rate
is that most attack attempts are likely not to be successful.
Because the Page Steering step of conversion fromhugepages
to 4 KB pages is not reversible, when an attack attempt fails,
the attacker needs to take the VM down and respawn it for
another try.

5 Evaluation

We now evaluate HyperHammer on two different microar-
chitectures. The first is Intel Core i3-10100 (Ice Lake), in-
tended for consumer-grade systems. The second is Intel Xeon
E3-2124 (Coffee Lake). Both machines use two non-ECC
8GB Apacer DDR4-2666 DIMMs (part number: D12.2324WC.
001) and identical software configurations. We denote these
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machines as S1 and S2, respectively. The hypervisor runs
Ubuntu 20.04 with kernel version 6.1.66 with the default
memory configuration of THP enabled. The attacker HVM
is configured with 4 vCPUs, 13GB of memory and one NIC,
running Ubuntu 22.04 with a modified kernel version 6.1.66.
We allocate 12GB of the VM’s memory for memory profiling.

We further evaluate Page Steering within the popular plat-
form OpenStack. Specifically, we use DevStack to deploy
a single-node OpenStack instance (nova version 29.1.0) on
the same physical machine as S1. It runs Libvirt 10.4 and
QEMU 9.0 with the default configuration provided by De-
vStack. Both the host and HVM are running Ubuntu 22.04
with kernel version 6.1.66. We denote this setup by S3. In the
following, we evaluate the main steps of HyperHammer.

Table 1. Results of Memory Profiling.

System Time Total 1→0 0→1 Stable Expl.

S1 72 h 395 213 182 246 96
S2 48 h 650 329 321 40 90

5.1 DRAMMemory Profiling

We profile the 12GB of memory allocated to the attacker
HVM to find vulnerable pages that contain bits suscepti-
ble to Rowhammer and their paired aggressor pages. We
first verify that the bank functions of our processors only
use bits preserved by hugepage mappings. For that, we use
DRAMDig [57] to reverse engineer the DRAM address func-
tion of each processor. We find that the bank function of the
Core i3-10100 processor uses address bits (17, 21), (16, 20),
(15, 19), (14, 18), (6, 13) to determine the bits of the bank
number. Similarly, the Xeon E3-2124 uses (17, 20), (16, 19),
(15, 18), (7, 14), (8, 9, 12, 13, 18, 19). Because all of the bits
used for the bank functions are preserved when translating
virtual addresses of hugepages to physical addresses, we can
use the 21 least significant bits of the guest physical address
(GPA) to determine the bank used for storing the address.

We further find that both processors use bits 18–33 to
determine the row number. Thus each row spans over 256 KB
and each 2MB hugepage contains eight rows. While we
cannot determine the row number from the GPA, we can
determine the three least significant bits of the row number,
specifying eight rows. This information allows us to identify
the rows that are near the borders of the hugepage, which
we can use as aggressor rows. We note that with 32 banks,
two 4KB pages of each row map to each bank.

Next, we use TRRespass2 to identify an effective hammer
pattern for the DIMMs. The results show that single-sided
Rowhammer can trigger reproducible bit flips. To profile the
memory, we try all combinations of aggressor row and bank.
For each combination we first use the identified hammer
2https://github.com/vusec/trrespass
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Figure 3. The number of noise pages at VM’s runtime. The
green and orange dotted lines denote 512 and 1,024 pages
respectively.

pattern for 250,000 rounds. We then follow with a scan of all
other 2MB regions to detect bit flips.

Table 1 summarizes the results of the profiling stage. Pro-
filing on either machine takes multiple days and identifies
hundreds of vulnerable bits. We note that only a fraction of
these vulnerable bits are stable, i.e., they can be flipped reli-
ably. Finally, we also check which of these bits is exploitable
for the HyperHammer attack. Recall that for the attack we
search for bit flips in bits 20–⌈log2 (mem_size)⌉ of a PTE.
(With 16GB of memory, we have ⌈log2 (mem_size)⌉ = 34.)
In total, we find 96 exploitable bits on S1, 46 that flip from 1
to 0, and 50 that flip from 0 to 1. On S2 we find a total of 90
exploitable bits, with 49 flipping from 1 to 0 and 41 flipping
from 0 to 1.

5.2 Page Steering

We now evaluate the steps described in Page Steering on
each of our settings.
Exhausting Noise Pages. In the VM, we allocate a page
and map it to 60,000 IOVAs, starting from virtual address
0x1 0000 0000 at intervals of 2MB. To demonstrate the de-
crease in the number of noise pages, we insert an artificial
delay of one second after every 1,000 mappings. Concur-
rently with the creation of the mappings, we periodically
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sample the /proc/pagetypeinfo interface of the hypervisor
to count the number of noise pages.

As Figure 3(a) shows, the number of noise pages on both
S1 and S2 drops rapidly below the threshold of 1,024 noise
pages. After the drop, the number of noise pages fluctuates
between zero and the threshold. The third configuration,
S3, starts with many more noise pages. (See Figure 3(b)).
Consequently, the decrease in the number of noise pages
takes much longer.
Releasing Pages from the VM and Triggering Page

Reuses. The hypervisor is expected to reuse as many
pages released by the VM as possible when allocating EPTs.
As the VM’s memory size caps the number of EPT pages that
can be allocated, an increase in the number of sub-blocks
released by the VM leads to a rise in the number of pages
reused by the EPTs. This continues until all of the VM’s
memory is mapped. Beyond this point, the number of pages
reused by the EPTs remains stable, as no additional EPT
pages can be allocated.

To showcase the page reuses, we add two functions in the
hypervisor. One function is to log PFNs of the pages that
are released from the VM. The other function is to dump
EPT pages in the system after EPTE creation is done. After
releasing 𝐵 page blocks from the VM and using a memory
size of 𝑆 for EPT creation to trigger vulnerable page reuses,
we can use the two functions to calculate the number of
released pages that end up in the EPT. The results are shown
in Table 2. 𝑅𝑁 is defined as the ratio between the number
of pages reused by the EPTs (𝑅) and the number of pages
released by the VM (𝑁 ). 𝑅𝐸 is defined as the ratio between
𝑅 and the number of EPT pages in the system (𝐸). For all
three settings, when 𝑆 grows from 5GB to 10GB with 𝑁

unchanged, both 𝑅𝑁 and 𝑅𝐸 grow significantly as we can
create more EPT pages with a larger 𝑆 . When 𝑁 increases
from 20 to 100 with 𝑆 unchanged, 𝑅𝐸 statistically grows as
well.

5.3 Exploitation

We now turn our attention to the exploitation, assuming
initially that the attacker successfully profiled the memory.
Recalling that HyperHammer is probabilistic, we start with
a theoretical analysis to determine a bound on the expected
probability of attack success. We then experimentally vali-
date the theoretical result. Finally, we conclude this section
with an estimated time of a successful attack.

5.3.1 Analysis. Recall that for a successful attack, the at-
tacker must first use Page Steering to massage an EPT page
into a vulnerable position. The attacker then attempts to
flip a vulnerable bit. The attack is successful if after flipping
the bit, the new address in the EPT entry points to an EPT
page. To bound the probability of success, we focus only on
the last step, and assume that both Page Steering and the
Rowhammer attack are successful.

Table 2. The number of pages that are released from the VM
and the number of released pages reused by EPTs.

Setting 𝑆 𝐵 𝑁 𝐸 𝑅 𝑅𝑁 𝑅𝐸

5GB 100 51200 3090 709 1.4% 22.9%
10GB 100 51200 5689 5194 10.1% 91.3%

S1 10GB 70 35840 5690 4885 13.6% 85.9%
10GB 30 15360 5699 3339 21.7% 58.6%
10GB 20 10240 5633 2290 22.4% 40.7%

5GB 100 51200 2532 1943 3.8% 76.7%
10GB 100 51200 4868 4190 8.2% 86.0%

S2 10GB 70 35840 4863 4363 12.2% 89.7%
10GB 30 15360 4857 3879 25.3% 79.9%
10GB 20 10240 4802 2449 23.9% 51.0%

5GB 100 51200 2817 1102 2.2% 39.1%
10GB 100 51200 5009 3900 7.6% 77.9%

S3 10GB 70 35840 5113 3705 10.3% 72.5%
10GB 30 15360 5098 2679 17.4% 52.6%
10GB 20 10240 5106 1982 19.4% 38.8%

During Page Steering, the attacker releases a 2MBhugepage
that contains a single vulnerable bit. To place an EPT page
at this vulnerable bit, the attacker needs to allocate 512
EPT pages. Each such allocation consists of converting one
2MB page to 512 4 KB pages. Thus, Page Steering consumes
512×2MB = 1GB of memory, while it creates 512 EPT pages.
The total number of EPT pages created is therefore limited
by the size of the address space of the VM. At the same time,
the total number of pages in the system is determined by the
size of the memory. Consequently, the probability of success
is roughly

VMMemory Size
512 × HostMemory Size

Hence, statistically, at the limit, the attacker could succeed
once every 512 attack attempts. Yet, more commonly, when
the VM is allocated only a small part of the physical memory,
the expected success rate can be much lower.

5.3.2 Experiment. To test our analysis, we profile the
memory of the systems, recording the locations of vulnerable
bits. We then repeatedly perform Page Steering, targeting 12
vulnerable bits at a time. (Our HVM uses 12GB of memory
for the attack and each vulnerable bit consumes 1GB of that.)
After each attempt, we scan the address space of the VM to
detect any changes due to bit flips. If we identify a change,
we check the page format to see if it matches an EPT page.
If it matches, we change one of the entries to point to a
hypervisor page that contains a magic value. We then scan
the memory again, looking for the magic value. The attack
attempt is considered a success if we find the magic value in
the VM address space. If the attack attempt fails, we restart
the VM and repeat the attack.
Table 3 shows the cost of the tests. Each attack attempt

takes less than 5 minutes. On S1 we achieve success after 250
attempts and on S2 after 432. The experiment requires less
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Table 3. The cost of HyperHammer tests.

Setting Avg. Time for Time for Attempts for

Single Attempt 1st Success 1st Success

S1 4.0 mins 16.7 hrs 250

S2 4.7 mins 33.8 hrs 432

than 34 hours on either machine. We note, however, that this
timing does not include memory profiling. Instead, for this
experiment, we implemented a hypercall to translate guest
physical addresses to host physical addresses. This allows us
to reuse profiling results without performing the profiling
step for each attempt.

5.3.3 Expected Time for An End-to-EndAttack. For an
end-to-end attack, the attacker needs to perform the profiling
for each attack attempt. As profiling time dominates the
attack time, we now analyze the expected time required for
a successful attack. Table 1 shows the time required to fully
profile the VM memory. However, because the attacker can
only release a small number of vulnerable bits, there is no
need to generate a complete profile. Instead, the attacker can
stop when enough bits, 12 in our case, are found. Thus, for S1,
we can expect each profiling attempt to take 12/96 × 72 = 9
hours, whereas for S2, the expected time is 12/90 × 48 = 6.4
hours. Assuming 512 attempts are required for a successful
attack, we can expect an end-to-end attack to succeed within
9 × 512/24 = 192 days on S1, and 6.4 × 512/24 = 137 days
on S2. As mentioned in Section 5.3.1, the expected number
of attempts depends on the portion of the host memory that
is allocated to the attacker’s VM. Hence, in the case that the
VM is relatively small, the attack is likely to be much longer.

6 Countermeasure and Discussion

Quarantining VM Communications. Since the hypervi-
sor does not check the semantics of the communications, an
attacker can exploit gMDs to achieve Page Steering. Conse-
quently, to defend a system against HyperHammer without
disabling certain functions of the VM, one of the methods is
for the hypervisor to quarantine communications initiated
by the VM. It refers to the hypervisor’s approach of detect-
ing abnormal requests from the VM that display suspicious
memory size change patterns and subsequently ignoring
those requests. Let the target memory size configured by
the hypervisor be defined as 𝑇 , the current size of the VM’s
memory as 𝑉 and the requested size of change as Δ. An at-
tacker will initiate communications where |Δ| > |𝑇 −𝑉 | or
Δ · (𝑇 −𝑉 ) < 0. When the hypervisor notices such patterns,
it defends itself by ignoring the request.
As such, we submitted a QEMU patch that quarantines

the requests from VMs on November 26, 2024, where QEMU
would respond with a NACK upon detecting a malicious
memory-unplug request. However, the developer of virtio-

mem pointed out that since the Linux driver does not expect a
NACK during unplugging, this patch could lead to inconsis-
tencies between the guest and the host. Additionally, when
the Linux driver fails to plug in a memory block, it first
unplugs the block and then retries—a behavior that, from
QEMU’s perspective, resembles a malicious unplug request.
Therefore, fully implementing this countermeasure requires
introducing a new feature flag in QEMU and updating both
the Linux and Windows drivers.
Mitigating Rowhammer Attacks. Existing Rowham-
mer mitigations can generally be divided into two categories:
software-only and hardware-based approaches. As the names
suggest, software-only solutions [5, 7, 8, 34, 36, 50, 55, 58, 62]
do not require hardware changes, thus being compatible with
existing hardware. However, none of these works are effec-
tive in a KVM setting against HyperHammer. While [36]
proposes the only solution that aims to protect EPTs from
Rowhammer, the solution disables memory overcommitting,
a common practice enabled by gMDs. As such, it is incom-
patible with our settings. Hardware-based solutions [25–
27, 30, 31, 35, 38, 41, 45, 47–49, 60] aim to mitigate Rowham-
mer bit flips by tweaking hardware. Among them, ECC (Error
Checking and Correcting) and TRR (Targeted Row Refresh)
have been adopted by DRAM manufacturers in production.
However, both production ECC and TRR have been reverse-
engineered [11, 14, 23, 24].
HyperHammer’s Limitations. As discussed in Section 5.3,
the current implementation of HyperHammer is estimated
to take 133–188 days to compromise the hypervisor, which is
a considerable amount of time. The effectiveness of Hyper-
Hammer drops with the size of the VM. Cloud environments
tend to allocate a much smaller portion of the host memory
to each VM, which would increase attack time significantly.
Additionally, HyperHammer is evaluated on small-scale Intel
processors with non-ECC DIMMs, which differs from typical
commodity servers that use Xeon scalable processors with
ECC DDR4. Furthermore, the Intel processors need to be
affected by the iTLB Multihit bug for the attack to be viable.
Prerequisites for HyperHammer. HyperHammer re-
quires THP, the countermeasure for the iTLB Multihit bug,
virtio-mem, VFIO, and vIOMMU. While the open-source
KVM/OpenStack supports all these features, it remains un-
clear whether these are fully supported in commodity cloud
environments. Specifically, THP is typically enabled by de-
fault in commodity clouds [1]. The virtio-mem driver is
commonly used for memory overcommitment in virtualized
environments. The countermeasure is available on certain
Intel processors [19]. Both VFIO and vIOMMU are supported
on specific EC2 instances, such as i3.metal [2], although
vIOMMU is less frequently utilized in such environments.
Broader Implications of HyperHammer. HyperHam-
mer reveals a vulnerability in the interaction between VMs
and the hypervisor, specifically in how physical memory is
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allocated, managed, and reused within virtualized environ-
ments. One key insight from HyperHammer is that VMs can
indirectly influence memory management in ways that may
undermine security. In our attack, the attacker manipulates
the memory allocation system within KVM by using specific
hypervisor features, such as vIOMMU and the Virtio inter-
face, to control the memory layout and force the reuse of
pages. This process, while leveraging legitimate VM features,
demonstrates how indirect control over memory—like relin-
quishing pages or exploiting device assignment—can have
significant security implications in how hypervisors handle
page mappings for sensitive data, such as EPT entries.

Our attack also highlights the risks associated with mem-
ory management decisions made at the hypervisor level,
particularly when these decisions are not sufficiently iso-
lated from the VM’s control. For example, the use of 2MB
hugepages and the demotion to 4 KB pages as a countermea-
sure for the iTLB multihit bug illustrates how even seem-
ingly harmless hypervisor optimizations or countermeasures
can inadvertently create opportunities for exploitation. This
shows that memory management mechanisms, when not
carefully protected and segregated, can be abused to gain
privileged access to the whole system.

Thus, the broader lesson of HyperHammer is that hyper-
visors should better decouple VMs from their management
and, in particular, avoid relying on VM requests or actions
for memory allocation, as this can provide attackers with a
vector for manipulating critical system memory. In response
to this lesson, we proposed the aforementioned countermea-
sure where the hypervisor actively quarantines or validates
memory management communications initiated by the VM.
The core principle behind this countermeasure is to intro-
duce validation and monitoring of any VM requests that
involve memory changes, reflecting the lesson above that
hypervisors should maintain control and validation of mem-
ory allocation. Besides, we apply this lesson to our following
analysis of virtio-balloon, another memory overcommit
technique in KVM, and Xen, a widely-used hypervisor. Based
on the analysis, we leave it to future work that focuses on
the engineering efforts required to adapt HyperHammer to
the virtio-balloon and Xen settings.
As introduced in Section 4.2.2, virtio-balloon allows

the hypervisor to dynamically manage the VM’s memory.
Therefore, it also introduces potential risks, similar to those
associated with virtio-mem in the HyperHammer attack.
Unlike virtio-mem, when malicious a VM uses virtio-
balloon, the attacker no longer needs to exhaust pages in
low-order blocks, as virtio-balloonmanagesmemory on a
per-page basis rather than bymemory blocks. However, with-
out VFIO, the attacker must find alternative methods to con-
vert the pages released by the VM to MIGRATE_UNMOVABLE.
One potential exploitation involves using the virtio-net-
pci driver to exhaust all existing MIGRATE_UNMOVABLE 4 KB
pages in the system. Once these pages are exhausted, the

system will be forced to steal MIGRATE_MOVABLE pages to
satisfy new allocation requests, creating an opportunity for
the attacker to manipulate the memory management system.

For the Xen hypervisor, it also supports memory balloon-
ing and vIOMMU. Moreover, an attacker can proactively
relinquish pages using the XENMEM_decrease_reservation
hypercall, which releases pages to Xen via the free_domheap_
pages function. Later, when Xen allocates pages for EPT, it
calls alloc_domheap_pages and may reuse the pages previ-
ously released by the VM, as it does not differentiate between
MIGRATE_UNMOVABLE and MIGRATE_MOVABLE pages. Conse-
quently, launching Page Steering may be even easier on Xen
than on KVM.

The broader lesson remains consistent: hypervisors must
carefully scrutinize any memory management requests initi-
ated by VMs. Whether through memory ballooning, device
assignment, or other dynamic memory allocation techniques,
hypervisors must implement strict memory validation to en-
sure that these requests do not introduce vulnerabilities.

7 Conclusion

In this paper, we present HyperHammer, an attack that
breaks HVM isolation by tricking the hypervisor into placing
EPTEs on victim pages and using Rowhammer to modify
the EPT to access arbitrary memory. The key technique in
HyperHammer is Page Steering, which provides powerful
ways to force the hypervisor to reuse pages released by the
VM. While HVMs are generally thought to be secure, our
work underscores how hardware vulnerabilities threaten
their security.
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